
1. daisy:532 (Requirements Elicitation Case Studies Using IBIS, JAD, and ARM)

2. #overview

3. #misuse

4. #soft

5. #quality

6. #controlled

7. #issue

8. #joint

9. #feature

10. #critical

11. #accelerated

12. #elicitation

13. #additional

14. #recommendations

15. #ack

16. #refs

Requirements Elicitation Introduction
Nancy R. Mead, CERT, Software Engineering Institute

Copyright © 2006 Carnegie Mellon University

2006-09-22

An area that is largely neglected is that of elicitation methods for security requirements engineering.
Many organizations, if they use an elicitation method at all, use one that they have previously used for
ordinary functional (end-user) requirements. Alternatively they may decide to use a brainstorming
approach to identify security requirements. In many cases these methods are not oriented towards
security requirements and do not result in a consistent and complete set of security requirements. The
resulting system is likely to have more security exposures than it would if the requirements were elicited
in a systematic way.

In this article we briefly discuss a number of elicitation methods and the kind of tradeoff analysis that
can be done to select a suitable requirements elicitation method. Companion case studies can be found in
Requirements Elicitation Case Studies1. While results may vary from one organization to another, the
discussion of our selection process and various methods should be of general use. Requirements
elicitation is an active research area, and we expect to see advances in this area in the future. We also
would expect that we will be able to begin to measure which methods are most effective for eliciting
security requirements. At present, there is little if any data comparing the effectiveness of different
methods for eliciting security requirements.

[Overview of Several Elicitation Methods2] [Misuse Cases3] [Soft Systems Methodology (SSM)4]
[Quality Function Deployment (QFD)5] [Controlled Requirements Expression (CORE)6]
[Issue-Based Information Systems (IBIS)7] [Joint Application Development (JAD)8]
[Feature-Oriented Domain Analysis (FODA)9] [Critical Discourse Analysis (CDA)10] [Accelerated
Requirements Method (ARM)11] [Elicitation Evaluation Criteria12] [Additional Considerations13]
[Recommendations14] [Acknowledgement15] [References16]

Requirements Elicitation Introduction 1
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

daisy:532
#overview
#misuse
#soft
#quality
#controlled
#issue
#joint
#feature
#critical
#accelerated
#accelerated
#elicitation
#additional
#recommendations
#ack
#refs

17. #Hickey1

18. #Hickey2

19. #Zowghi

20. #Hickey2

21. #Sindre

22. #McGraw

23. #Check

24. #QFD

25. #Christel

26. #SDS

27. #Kunz

28. #Wood

29. #Kang

30. #Schif

31. #Hub

32. #Sindre

33. #Jacob

34. #Rumbaugh

35. #Anton

36. #McGraw

Overview of Several Elicitation Methods

The following is a list of sample elicitation methods that could be considered for eliciting security
requirements. Some have been developed specifically with security requirements in mind (e.g., misuse
cases), whereas others have been used for traditional requirements engineering and could potentially be
used for security requirements. As research in this area continues, in the future we may have a better
understanding of how the unique aspects of security requirements elicitation drive selection of a method.
We also note recent work on requirements elicitation in general that could be considered in developing
such a list [Hickey 0317, Hickey 0418, Zowghi 05]19 and in doing the selection process [Hickey 04]20. We
briefly describe each of these elicitation methods:

• misuse cases [Sindre 0021, McGraw 06]22

• Soft Systems Methodology (SSM) [Checkland 90]23

• Quality Function Deployment (QFD) [QFD 05]24

• Controlled Requirements Expression (CORE) [Christel 9225, SDS 85]26

• issue-based information systems (IBIS) [Kunz 70]27

• Joint Application Development (JAD) [Wood 95]28

• feature-oriented domain analysis (FODA) [Kang 90]29

• critical discourse analysis (CDA) [Schiffrin 94]30

• Accelerated Requirements Method (ARM) [Hubbard 00]31

Misuse Cases
A use case generally describes behavior that the system/entity owner wants the system to show [Sindre
00]32. Use-case models and their associated diagrams (UCDs) have proven quite helpful for the
specification of requirements [Jacobson 9233, Rumbaugh 94]34. However, overlooking significant
requirements leads to problems in developing software [Anton 01]35. As a result, it is controversial to
use use-case models for systems and quality requirements.

Misuse cases apply the concept of a negative scenario--that is, a situation that the system's owner does
not want to occur--in a use-case context. For example, business leaders, military planners, and game
players are familiar with analyzing their opponents' best moves as identifiable threats. Misuse cases are
also known as abuse cases. A deeper discussion of abuse cases as an approach for identifying security
requirements can be found in [McGraw 06]36.

One significant characteristic of misuse cases is that they seem to lead to quality requirements, such as
those for safety and security, whereas other elicitation methods are focused on end-user requirements, so
their effectiveness in the identification of security requirements is unknown. Use cases describe system

Requirements Elicitation Introduction 2
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Hickey1
#Hickey2
#Zowghi
#Hickey2
#Sindre
#McGraw
#Check
#QFD
#Christel
#SDS
#Kunz
#Wood
#Kang
#Schif
#Hub
#Sindre
#Sindre
#Jacob
#Rumbaugh
#Anton
#McGraw

37. #Check

38. #Check

39. #QFD

40. #QFD

behavior in terms of functional (end-user) requirements. Interplay between misuse cases and use cases
could improve the efficiency of eliciting all requirements in a system engineering life cycle. Misuse
cases and use cases may be developed from system to subsystem levels--and lower as necessary. Lower
level cases may draw attention to underlying problems not considered at higher levels and may compel
system engineers to reanalyze the system design. Misuse cases are not a top-down method, but they
provide opportunities to investigate and validate the security requirements necessary to accomplish the
system's mission.

Soft Systems Methodology (SSM)
SSM deals with problem situations in which there is a high social, political, and human activity
component [Checkland 90]37. The SSM can deal with "soft problems" that are difficult to define, rather
than "hard problems" that are more technology oriented. Soft problems are the situations in which we
know the system is not performing in the desired manner, and we want to find out why and see if we can
do anything about it. SSM was developed by Peter Checkland to deal with soft problems; it is composed
of seven stages:

1. Find out the problem situation.

2. Express the problem situation through rich pictures (i.e., representations of organizational structure
and processes pertinent to the problem situation).

3. Select how to view the situation and produce root definitions.

4. Build conceptual models of what the system must do for each root definition.

5. Compare the conceptual models with the real world.

6. Identify feasible and desirable changes.

7. Make recommendations to improve the problem situation [Checkland 90]38.

The primary benefit of SSM is that it provides structure to soft problem situations and enables their
resolution in an organized manner. It compels the developer to discover a solution that goes beyond
technology.

Quality Function Deployment (QFD)
QFD is "an overall concept that provides a means of translating customer requirements into the
appropriate technical requirements for each stage of product development and production" [QFD 05]39.
The distinguishing attribute of QFD is the focus on customer needs throughout all product development
activities. By using QFD, organizations can promote teamwork, prioritize action items, define clear
objectives, and reduce development time [QFD 05]40.

Although QFD covers a broad portion of the product development life cycle, the earlier stages of the
process are applicable to requirements elicitation for software engineering. These stages include

1. identifying the customer (stakeholders)

2. gathering high-level customer requirements

3. constructing a set of system features that can satisfy customer needs

4. creating a matrix to evaluate system features against satisfaction of customer needs

Note that the evaluation of features and needs could also be used for prioritization of requirements, in

Requirements Elicitation Introduction 3
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Check
#Check
#QFD
#QFD

41. #Mullery

42. #Fink

43. #SDS

44. #Christel

45. #Kunz

46. daisy:532 (Requirements Elicitation Case Studies Using IBIS, JAD, and ARM)

47. #Wood

the context of a QFD requirements elicitation activity.

Controlled Requirements Expression (CORE)
CORE is a requirements analysis and specification method that clarifies the user's view of the services to
be supplied by the proposed system and the limitations imposed by that system's operational
environment, in conjunction with some degree of performance and reliability investigation [Mullery
7941]. CORE provides methods and notations for every phase of "elicitation, specification and analysis
of requirements, and results in a structured data flow form of specification" [Finkelstein 9242]. CORE is
a mature method with a set of guidelines on how to apply the method to a problem [SDS 85]43. The
method is a flexible approach to requirements elicitation, permitting it to be applied to a wide set of
problems. CORE encourages contributions from many different communities to develop requirements.
CORE delineates the tasks of the members of this community (e.g., Viewpoint Authorities) and
structures the communication between these groups [Christel 92]44. An incremental examination of
information flows and processing activities can be executed using CORE, with each previous step
providing the foundation for the present step of specification. CORE assists in discovering design
limitations.

Issue-Based Information Systems (IBIS)
Developed by Horst Rittel, the IBIS method is based on the principle that the design process for complex
problems, which Rittel terms "wicked" problems, is essentially an exchange among the stakeholders in
which they bring their personal expertise and perspective to the resolution of design issues [Kunz 70]45.

Any problem, concern, or question can be an issue and may require discussion and resolution in order
for the design to proceed. The IBIS model centers on this give and take that constitutes the design
process. The model was developed over 20 years ago and has been implemented effectively in varied
design situations from architectural design to planning at the World Health Organization.

The IBIS model focuses on the articulation of the key issues in the design problem. Each issue can have
many positions. A position is a statement or assertion that resolves the issue. Often positions will be
mutually exclusive of each other, but the method does not require this. Each of an issue's positions, in
turn, may have one or more arguments that either support or object to it.

There are several types of links among the concepts in IBIS. For example, a position responds to an
issue with a "responds to" link. Arguments must be linked to their positions with either "supports" or
"objects to" links. Issues may generalize or more narrowly focus other issues and they may question or
be suggested by other issues, positions, and arguments.

The results of applying IBIS are discussed in the companion case study paper46.

Joint Application Development (JAD)
Unlike QFD, JAD [Wood 95]47 is specifically designed for the development of large computer systems.

Requirements Elicitation Introduction 4
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Mullery
#Fink
#SDS
#Christel
#Kunz
daisy:532
#Wood

48. #Kang

49. #Kean

50. #Kuloor

51. #Schif

52. #Alvarez

The goal of JAD is to involve all stakeholders in the design phase of the product via highly structured
and focused meetings. Typical participants in the session include a facilitator, end users of the product,
main developers, and observers.

In the preliminary phases of JAD, the requirements-engineering team is tasked with fact finding and
information gathering. Typically, the outputs of this phase, as applied to security requirements
elicitation, are security goals and artifacts. The actual JAD session is then used to validate this
information by establishing an agreed-upon set of security requirements for the product.

Feature-Oriented Domain Analysis (FODA)
FODA is a domain analysis and engineering method that focuses on developing reusable assets [Kang
90]48. The FODA method was founded on two modeling concepts: abstraction and refinement [Kean
97]49. Abstraction is used to create domain products from the specific applications in the domain. These
generic domain products abstract the functionality and designs of the applications in a domain. The
generic nature of the domain products is created by abstracting factors that make one application
different form other related applications. The FODA method advocates that applications in the domain
should be abstracted to the level where no differences exist between the applications. Specific
applications in the domain are developed as refinements of the domain products.

The FODA method has three phases:

1. context analysis
Information required for various activities is gathered from various sources.

2. domain modeling
Product line requirements are analyzed using a set of domain models. Common and variable
requirements are identified using a technique called feature modeling. Feature models consist of
diagrams that represent features in a hierarchical structure. These requirements are further analyzed
using several structured system-analysis techniques such as data flow diagrams, entity relationship
diagrams, and functional diagrams.

3. architecture modeling
Domain models are used to create an architecture model. The architecture model can be instantiated
to develop individual applications [Kuloor 02]50.

Critical Discourse Analysis (CDA)
CDA uses sociolinguistic methods to analyze verbal and written discourse [Schiffrin 94]51.
Sociolinguistics assigns special significance to the structure of speech and texts and provides methods
for specifying the linguistic features of different types of discourse units and the way they are tied
together into larger units of meaning [Alvarez 02]52.

Moreover, CDA concerns itself with examining social context along the lines of ideology, power, and
inequality. Through discourse examination, topics of power inequalities usually along the lines of race,
class, gender, sexuality, and occupation are exposed. Therefore, CDA demystifies what is taken to be
common sense by "de-familiarizing" it and signaling its functions and consequences in sustaining the
social order.

In particular, CDA can be used to analyze requirements elicitation interviews and to understand the

Requirements Elicitation Introduction 5
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Kang
#Kang
#Kean
#Kuloor
#Schif
#Alvarez

53. #Hub

54. #SEI

narratives and "stories" that emerge during requirements elicitation interviews.

Accelerated Requirements Method (ARM)
The ARM process [Hubbard 00]53 is a facilitated requirements elicitation and description activity.
Overall, there are three phases of the process:

1. Preparation Phase

2. Facilitated Session Phase

3. Deliverable Closure Phase

In addition, there are various assumed Successor Activities Phases.

During the Preparation Phase, planning and preparation are completed to ensure an effective session.
During this activity, the overarching goals and objectives, and the preliminary scope of the effort are
defined; key success measures are defined; key participants are identified; and the preliminary schedule
is developed. The Preparation Phase typically has a duration of one to four days.

During the Session Phase, a trained--and content neutral--facilitator leads the selected participants
through a structured process to collect the functional requirements of the project under consideration.
The facilitated process employs defined scoping, brainstorming, and explanatory and prioritization
techniques. This stage typically has a duration of three days.

During the Closure Phase, the key deliverables, such as a requirements collection, are polished,
published, and disseminated, and the various following activities are planned.

The ARM process is similar to JAD. ARM also has certain significant differences with respect to the
baseline JAD method, which contributes to its uniqueness. For example, in this process, the facilitators
are content-neutral, the group dynamic techniques used are different from those used in JAD, the
brainstorming techniques used are different, and the requirements are recorded and organized using
different conceptual models.

Elicitation Evaluation Criteria

The following are example evaluation criteria that may be useful, but certainly there are other criteria
that could be used as well. As we gain more understanding of the unique aspects of eliciting security
requirements, we may be able to refine these criteria. The main thing is to have criteria, to have a
common understanding of what they mean, and to use them to help select an elicitation method.

• adaptability: The method can be used to generate requirements in multiple environments. For
example, the elicitation method works equally as well with a software package that is near
completion as with a project in the planning stages.

• computer-aided software engineering (CASE) tool: The method includes a CASE tool. (The
Software Engineering Institute defines a CASE tool as "a computer-based product aimed at
supporting one or more software engineering activities within a software development process" [SEI
04]54.)

• stakeholder acceptance: The stakeholders are likely to agree to the elicitation method in analyzing
their requirements. For example, the method isn't too invasive in a business environment.

• easy implementation: The elicitation method isn't overly complex and can be properly executed
easily.

Requirements Elicitation Introduction 6
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Hub
#SEI
#SEI

55. #tbl1

• graphical output: The method produces readily understandable visual artifacts.

• quick implementation: The requirements engineers and stakeholders can fully execute the
elicitation method in a reasonable length of time.

• shallow learning curve: The requirements engineers and stakeholders can fully comprehend the
elicitation method within a reasonable length of time.

• high maturity: The elicitation method has experienced considerable exposure and analysis in its
vetting by the requirements engineering community.

• scalability: The method can be used to elicit the requirements of projects of different sizes, from
enterprise-level systems to small-scale applications.

Note that this approach presumes that all criteria are equally important. It is often the case that some
criteria are more important than others, in which case a weighted average could be used. For example,
availability of a CASE tool might be more important than graphical output. A typical weighting scheme
could consider criteria to be "essential" with weight 3, "desirable" with weight 2, and "optional" with
weight 1. The elicitation methods can then be ranked using a tabular form, such as the example shown in
Table 155. This is not intended to be an actual recommendation to use a specific method. Each
organization/project should develop its own comparison criteria and its own ratings.

Table 1. Example table for comparison of elicitation methods
3 = Very Good, 2 = Fair, 1 = Poor

Misuse
Cases

SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability3 1 3 2 2 3 2 1 2

CASE
tool

1 2 1 1 3 2 1 1 1

Stakeholder
acceptance

2 2 2 2 3 2 1 3 3

Easy
implementation

2 2 1 2 3 2 1 1 2

Graphical
output

2 2 1 1 2 1 2 2 3

Quick
implementation

2 2 1 1 2 1 2 2 3

Shallow
learning
curve

3 1 2 1 3 2 1 1 1

High
maturity

2 3 3 3 2 3 2 2 1

Scalability1 3 3 3 2 3 2 1 2

Total
Score

18 18 17 16 22 19 14 14 18

Requirements Elicitation Introduction 7
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#tbl1

56. #Chung

57. http://csdl.computer.org/comp/proceedings/hicss/2002/1435/08/14350255abs.htm

Additional Considerations

It is possible that a combination of methods may work best. This should be considered as part of the
evaluation process, assuming that there is sufficient time and resource to assess how methods may be
combined and to actually do this. Organizations should also consider the time necessary to implement an
elicitation method and the time needed to learn a new tool that supports a method. Select an elicitation
method that meets the needs of a diverse group of stakeholders, in order to address a broader range of
security requirements.

Recommendations

Organizations need to do a better job of identifying security requirements. It is not sufficient to list
obvious requirements, such as strong passwords, encryption, and access control mechanisms, and
declare victory. A systematic approach is need to ensure that needed security requirements are captured.
Otherwise the resultant system is likely to contain many avoidable security flaws. We recommend that
organizations take the time to select an elicitation method using a systematic tradeoff analysis approach,
such as we have outlined here.

Acknowledgement

This material is extracted and adapted from a more extensive report by Lydia Chung, Frank Hung, Eric
Hough, and Don Ojoko-Adams [Chung 06]56.

References

[Alvarez 02] Alvarez, R. "Discourse Analysis of Requirements
and Knowledge Elicitation Interviews57."
Proceedings of the 35th Hawaii International
Conference on System Sciences (HICSS-35). Big
Island, HI, January 7-10, 2002 (2002).

[Anton 01] Anton, A. I.; Dempster, J. H.; & Siege, D. F.
"Deriving Goals from a Use Case Based
Requirements Specification for an Electronic
Commerce System," 10-19. Proceedings of the
Sixth International Workshop on Requirements
Engineering: Foundation for Software Quality
(REFSQ 2000). Stockholm, Sweden, June 5-6,
2000. London, England: Springer-London, 2001.

[Checkland 90] Checkland, P. Soft System Methodology in Action.
Toronto, Ontario, Canada: John Wiley & Sons,
1990.

[Christel 92] Christel, M. & Kang, K. Issues in Requirements
Elicitation58 (CMU/SEI-92-TR-012,

Requirements Elicitation Introduction 8
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

#Chung
http://csdl.computer.org/comp/proceedings/hicss/2002/1435/08/14350255abs.htm
http://csdl.computer.org/comp/proceedings/hicss/2002/1435/08/14350255abs.htm
http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.012.html
http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.012.html

58. http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.012.html

59. http://www.sei.cmu.edu/publications/documents/06.reports/06sr003.html

60. http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html

ADA258932). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University,
1992.

[Chung 06] Chung, L.; Hung, F.; Hough, E.;Ojoko-Adams, D.
Security Quality Requirements Engineering
(SQUARE): Case Study Phase III59

(CMU/SEI-2006-SR-003). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon
University, 2006.

[Finkelstein 92] Finkelstein, A. "TARA: Tool Assisted
Requirements Analysis," 413- 432. Conceptual
Modeling, Databases and CASE: An Integrated
View of Information Systems Development. New
York, NY: John Wiley & Sons, 1992.

[Hickey 03] Hickey, A.; Davis, A.; & Kaiser, D.
"Requirements Elicitation Techniques: Analyzing
the Gap Between Technology Availability and
Technology Use." Comparative Technology
Transfer and Society 1, 3 (December 2003):
279-302.

[Hickey 04] Hickey, A. & Davis, A. "A Unified Model of
Requirements Elicitation." Journal of
Management Information Systems 20, 4 (Spring
2004): 65-84.

[Hubbard 00] Hubbard, R.; Mead, N.; & Schroeder, C. "An
Assessment of the Relative Efficiency of a
Facilitator-Driven Requirements Collection
Process with Respect to the Conventional
Interview Method." International Conference on
Requirements Engineering. Los Alamitos, CA:
IEEE Computer Society Press, June 2000.

[Jacobson 92] Jacobson, I. Object-Oriented Software
Engineering: A Use Case Driven Approach.
Boston, MA: Addison-Wesley, 1992.

[Kang 90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novack,
W. E.; & Peterson, A.S. Feature-Oriented Domain
Analysis Feasibility Study60

(CMU/SEI-90-TR-021, ADA235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University, 1990.

Requirements Elicitation Introduction 9
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

http://www.sei.cmu.edu/publications/documents/06.reports/06sr003.html
http://www.sei.cmu.edu/publications/documents/06.reports/06sr003.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html

61. http://www.sei.cmu.edu/str/descriptions/foda_body.html

62. http://www2.enel.ucalgary.ca/People/eberlein/publications/ProdLine_ICSSEA2002.pdf

63. http://www-iurd.ced.berkeley.edu/pub/WP-131.pdf

64. http://www.qfdi.org/what_is_qfd/faqs_about_qfd.htm

65. http://www.sei.cmu.edu/legacy/case/case_whatis.html

[Kean 97] Kean, L. "Feature-Oriented Domain Analysis61."
Software Technology Roadmap. (1997).

[Kuloor 02] Kuloor, C. & Eberlein, A. Requirements
Engineering for Software Product Lines62 (2002).

[Kunz 70] Kunz, W. & Rittel, H. Issues as Elements of
Information Systems, Working Paper 13163.
Berkeley: Institute of Urban & Regional
Development, University of California.

[McGraw 06] McGraw, G. Software Security: Building Security
In, Boston, MA: Addison-Wesley, 2006, pp.
205-222.

[Mullery 79] Mullery, G. P. "CORE: A Method for Controlled
Requirements Specification," 126-135.
Proceedings of the 4th International Conference
on Software Engineering (ICSE-4). Munich,
Germany, September 17-19, 1979. Los Alamitos,
CA: IEEE Computer Society Press, 1979.

[QFD 05] QFD Institute. Frequently Asked Questions About
QFD64 (2005).

[Rumbaugh 94] Rumbaugh, J. "Getting Started: Using Use Cases
to Capture Requirements." Journal of
Object-Oriented Programming 7, 5 (September
1994): 8-23.

[Schiffrin 94] Schiffrin, D. Approaches to Discourse. Oxford,
England: Blackwell Publishers Ltd, 1994.

[SDS 85] Systems Designers Scientific. CORE--The
Method: User Manual. London, England:
SD-Scicon, 1986.

[SEI 04] Software Engineering Institute. What is a CASE
Environment?65 (2004).

[Sindre 00] Sindre, G. & Opdahl, A. L. "Eliciting Security
Requirements by Misuse Cases," 120-131.
Proceedings of the 37th International Conference
on Technology of Object-Oriented Languages

Requirements Elicitation Introduction 10
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

http://www.sei.cmu.edu/str/descriptions/foda_body.html
http://www.qfdi.org/what_is_qfd/faqs_about_qfd.htm
http://www.qfdi.org/what_is_qfd/faqs_about_qfd.htm
http://www.sei.cmu.edu/legacy/case/case_whatis.html
http://www.sei.cmu.edu/legacy/case/case_whatis.html

1. http://www.sei.cmu.edu/about/legal-permissions.html

(Tools 37-Pacific 2000). Sydney, Australia,
November 20-23, 2000. Los Alamitos, CA: IEEE
Computer Society, 2000.

[Wood 95] Wood, J. & Silver, D. Joint Application
Development, 2nd ed., New York: Wiley, 1995.

[Zowghi 05] Zowghi, D. & Coulin, C. "Requirements
Elicitation: A Survey of Techniques, Approaches,
and Tools", Book Chapter in Engineering and
Managing Software Requirements. Edited by
Aybuke Aurum and Claes Wohlin. Heidelberg,
Germany: Springer-Verlag, 2005.

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Fields

Name Value

Copyright Holder SEI

Fields

Name Value

is-content-area-overview false

Content Areas Best Practices/Requirements Engineering

SDLC Relevance Requirements

Workflow State Technical Editing

Requirements Elicitation Introduction 11
ID: 533 | Version: 8 | Date: 22/09/06 16:08:56

http://www.sei.cmu.edu/about/legal-permissions.html

